SHIELDING & H-NMR SPLITTING

Carbon or hydrogen nuclei in non-polar environments are 'shielded' since there is high electron density around them. The opposite is true for nuclei in polar environments.

Therefore:

- Nuclei in shielded (non-polar) environments need *more* magnetic energy to resonate and have *low* chemical shift.
- Nuclei in de-shielded (polar) environments need *less* magnetic energy to resonate and have *high* chemical shift.

Understanding shielding, and its effects on chemical shift, can be useful when interpreting NMR spectra as it reduces your reliance on the data booklet.

Example:

Below is the high resolution spectrum for propional dehyde. Identify which hydrogen produced each of the peaks in the spectrum (without using the data booklet).

Solution

The most polar hydrogen environment will have the highest chemical shift, the least polar will have the smallest chemical shift.

SPLITTING

A peak will split according to how many non-equivalent hydrogen are on the neighbouring atoms (n+1 rule).

As an example, consider two isomers of an ester with the formula $\,C_4 H_8 O_2 \,.$

Match the esters to the spectra shown below.

Spectrum 1:

Spectrum 2:

Solution

Step 1:

Identify the peaks produced by the hydrogen environments on both sides of the ester link. Since ester links occur in the middle of a hydrocarbon chain, there are always two peaks the spectrum due to the hydrogen on either side of the link.

The hydrogen closest to the oxygen in the chain are in a more polar environment and will have a higher chemical shift of about 4 ppm. The hydrogen closest to the carbonyl (C=O) are in a less polar environment and will have a chemical shift of about 2 ppm.

From the data booklet:

These peaks can now be identified on the spectra.

Step 2:

Use the spitting patterns to assign each ester to a spectrum.

are two hydrogen on the neighbouring atom.

